Table of Contents
В списке индустриально-промышленных металлов чугун является самым дешёвым материалом. Производство метала не требует глубокой технологической переделки, что выгодно отличает его себестоимость в сравнении со сталями. Имея хорошие литейные качества чугун в широко используют в изготовлении массивных корпусных, объёмных деталей и отдельных частей механизмов, не подвергающихся сильным ударным нагрузкам. Свойства отдельных видов чугунов и их марок во многом зависят от уровня содержания углерода его состояния и формы включений в сплаве.
Основные механические и физические свойства
По своей природе чугун представляет собой сплав железа с углеродом с естественным содержанием незначительного количества примесей, где процент содержания углерода в общей объёмной массе сплава может быть в приделах от 2.14 до 6.67%.
Сплавы, имеющие в своём составе углерода ниже 2.14% переходят в разряд сталей. При содержании углерода в структуре выше 6.67% сплавы переходят в разряд сверхтвёрдых материалов именуемых — карбидами железа (цементитами).
Сравнительно со сталью, высокое содержание углерода делает чугун хрупким, твёрдым, не устойчивым к ударным нагрузкам. Этот же фактор затрудняет механическую обработку и свариваемость материала. Вместе с этим плюсом является хорошие литейные свойства и коррозийная устойчивость чугунов. Также при включении в состав некоторых легирующих добавок возможно улучшение некоторых физических и механических качеств металла.
Стандартно все марки чугунов, как и других сплавов, характеризуются такими механическими параметрами как твёрдость материала и сопротивление разрыву при растяжении.
Классификация чугунов
По назначению в металлургии выпускаются два вида чугунов:
- передельный – используемый для технологической переплавки в сталь
- литейный – используемый для отливки готовых деталей, который в свою очередь подразделяется на конструкционный и специальный
Содержанием углерода в сплаве чугуны делятся на следующие типы:
- Доэвтектические с содержанием углерода 2.14 – 4.3%
- Эвтектические с содержанием — 4.3%
- Заэвтектические с содержанием — 4.3 — 6.67%
По составу сплавов чугуны делятся на легированные и нелегированные
В зависимости от состояния углерода в структуре сплавы отличаются цветом на плоскости излома, где различают серый и белый виды чугунов. Структура белого чугуна характеризуется наличием углерода только в сформированном цементите. Углерод в структуре серых чугунов находится в виде графита сформированных в виде отдельных включений.
По структуре, а конкретно по форме и распределению включений углерода (графита) в массе сплава чугуны делятся на четыре группы:
- Сплавы с графитом в виде пластинок в своей структуре. Данный вид чугунов не подаётся легированию.
- Чугуны с включениям шаровидного графита. Такая структура характерна высокопрочным чугунам.
- Сплавы с включениями вермикулярного (червеобразного) графита в своей структуре.
- Хлопьевидные включения графита в структуре сплава характерны ковким маркам чугуна.
По структуре металлической основы сплава различают:
- Перлитные
- Ферритные
- Перлито-ферритные
- Аустенитные
- Бейнитные
- Мартенситные
Все перечисленные определения отражают строение структуры в соответствии с диаграммой превращения при плавлении стали и чугуна в зависимости от содержания углерода и режимов его кристаллизации в общем объёме сплава.
Свойства белого чугуна
Особенностью белого чугуна является то, что углерод в его составе растворён в цементите, где общая структура состоит из железа и цементита. Отдельных включений графита, как в сером чугуне, здесь нет и срез метала является более светлым.
Цементит представляет собой высокоуглеродистое соединение в виде карбида железа Fe₃C, которое является неустойчивым и при определённых условиях и может распадаться с выделением углерода отдельными включениями графита в структуре металла.
Особенности белого чугуна
Данный вид чугуна характеризуется:
- Высокой твёрдостью и удельным сопротивлением
- Хорошей износостойкостью
- Достаточной стойкостью к тепловому воздействию
- Относительно хорошую коррозийную стойкость, включая к кислотам
- Его литейные качества не позволяют изготовление деталей сложных конфигураций, где в литье могут образовываться трещины
- Литьё из белого чугуна даёт усадку в переделах 2%
- За счёт своей твердости материал сложно обрабатывать
- Высокая хрупкость не позволяет его использовать в деталях испытывающих ударные нагрузки
- Материал очень плохо сваривается, где в процессе налаживания шва при нагреве дуговой или газовой сварки образуются частые трещины
Применение
Белый чугун не столь широк в применении как серый. Его используют в отливке несущих элементов конструкций в строительстве, судостроении, станкостроении. Сплав в виду не столь высоких литейных качеств больше подходит для литья простых, несложных конфигураций массивных деталей. Чаще сплав используют как сырьё во вторичной переделке для производства ковких и других марок серого чугуна.
Серый чугун
Данный вид углеродистого сплава является самым широко применяемым из чугунов. Сплав используют при литье деталей требующих высокой устойчивости к нагрузкам на сжатие. Ограничение использования материала определяет его хрупкость и неустойчивость к изгибающим нагрузкам. Сплав применяют в литье цилиндров двигателей, несущих станин станков и корпусов оборудования.
Факторы, влияющие на свойства сплава
При плавке серых чугунов происходит выделение в структуре углерода в виде графита, где последний формируется отдельными пластинками или чешуйками. При этом для обеспечения соответствующей твёрдости и прочности содержание углерода должно быть в пределах 2.4-3.7%. В случае превышения углерода в составе сплав будет отличатся повышенной хрупкостью. При низком содержании углерода сплав потеряет свою твёрдость и литейные качества. Механические свойства серого чугуна во многом зависят от числа формы и распределения графита в структуре. Наиболее прочным считают сплавы с перлитной структурой, где графит равномерно распределён в виде микро-пластинок.
Технологии выплавки
Форма и размер графитных включений зависит от наличия в расплавленном чугуне центров кристаллизации, скорости его охлаждения и наличии добавок, обеспечивающих выделение графита. Чем больше в расплавленном материале нерастворимых частичек, тем больше центров кристаллизации, обеспечивающих формирование более мелких включений графита.
Для обеспечения большего числа центров кристаллизации перед разливом в формы осуществляют внедрение в жидкий металл модифицированных добавок в составе с кремнием, алюминием и кальцием. В раскалённом металле данные элементы переходят в соответствующие оксиды SiO2, Al2O3 и CaO в виде взвешенных частиц, образуя центры кристаллизации в структуре.
Марки серого чугуна
СЧПГ в отливках ГОСТ 1412-85: СЧ10, СЧ15, СЧ18, СЧ20, СЧ21, СЧ24, СЧ25, СЧ30, СЧ35. Число в маркировке означает временное сопротивление при растяжении (кгс/мм²).
Высокопрочный чугун
Данный сплав является подвидом модифицированного серого чугуна, где графит в структуре сплава распределён шаровидными включениями. Высокая прочность обусловлена меньшей площади к объёму сферических включений в структуре, что обеспечивает более монолитную металлическую основу сплаву. Формирование такой структуры обеспечивается присадками в виде чистого магния или связками (Например, Mg 20% + Ni 80%). Такие сплавы имеют ферритную или перлитную основу с более высокой пластичностью и ударной вязкостью, чем у обычных серых чугунов. Прочность сплава повышается с увеличением содержания в структуре перлита и увеличением дисперсности шариков графита. Вязкость повышается с увеличением в структуре феррита.
Такие чугуны успешно используют вместо стали для отливки коленчатых валов двигателей, шестерней, муфт, задних мостов, ступиц, картеров.
Среди высокопрочных чугунов ВЧШГ существуют следующие марки согласно ГОСТа 7293-85: ВЧ35-22, ВЧ40-15, ВЧ45-10, ВЧ50-7, ВЧ60-3, ВЧ70-2, ВЧ80-2, ВЧ100-2. Первое число означает временное сопротивление растяжению (кгс/мм²), второе относительное удлинение в %.
Свойства ковкого чугуна
Сплав получают из отлитого белого чугуна путем дополнительного продолжительного отжига при температуре 950°С в контейнерах засыпанным песком. Таким образом удаётся достигнуть относительной вязкости металла. Это конечно не позволяет работать с металлом кузнечным методом, но достаточно повышает стойкость к ударным нагрузкам материала.
В структуре ковкий чугун, как и серый содержит в своей сталистой основе включения углерода в виде графита. Но структурное отличие заключается в том, что графит распределён в массе сплава микроскопическими хлопьями, изолированными между собой. Таким образом металлическая снова менее разобщена и материал обладает более высокой пластичностью и вязкостью.
Свойства ковкого чугуна во много зависят от размера графитных включений в своей структуре. Среди чугунов данного типа, в зависимости от строения структуры различают два вида: ферритный (Ф класса), перлитный (П класса). К ковким чугунам относятся следующие марки: с ферритной и феррито-перлитной структурой КЧ30-6, КЧ33-8, КЧ35-10, КЧ37-12; с перлитной структурой КЧ45-7, КЧ50-5, КЧ55-4, КЧ60-3, КЧ65-3, КЧ70-2, КЧ80-1.5.
Первая цифра в маркировке указывает минимальный придел прочности у кгс/мм², вторая- минимальное относительное линейное удлинение.
Действие добавок на свойства чугунов
Если говорить о углероде в составе чугуна, то его относительное массовое повышение в составе сплава положительно влияет на текучесть раскалённого жидкого сплава. Вместе с этим, при выделении углерода в виде графита в структуре сплава объём вылитой заготовки увеличивается, что частично компенсирует усадку после полной кристаллизации. Таким образом, углерод положительно влияет на литейные качества и позволяет отливать достаточно точные размеры заготовок.
Кремний
Является хорошим катализатором для выделения графита в структуре сплава, что важно при производстве серых чугунов. При взаимодействии железа с кремнием образуются соединения силициды FeSi и Fe₃Si₂, активизирующие формирование графитных пластинок, блокируя образование цементита в структуре, повышающего хрупкость материала. Дополнительно, кремний повышает жидкотекучесть сплава, понижает температуру плавления, замедляет скорость охлаждения, что улучшает формообразования отливок. Содержание кремния в массе серых чугунов может присутствовать в пределах 0.8-3.6%.
Марганец
Элемент обратное действие кремнию — для устойчивого удерживания углерода в составе сформированного карбида (цементита), обеспечивая отбеливание чугуна. Предельное содержание марганца в серых чугунах ограничивается в пределах 0.5-1.5%.
Сера
Понижает текучесть расплавленного чугуна, снижает выделение графита и повышает его хрупкость. Данный элемент негативно влияет на качество сплава поэтому его содержание в составе не должно превышать 0.7%
Фосфор
Элемент создаёт в структуре твёрдую и хрупкую эвктетику, поэтому в чугунах предназначенных для изготовления деталей подвергаемых самым малым ударным нагрузкам его содержание не должно превышать 0.3%. Однако для литых деталей требующих повышенной износоустойчивости содержание фосфора доводят до массового содержания в пределах 0.7-0.8%. Дополнительно, фосфор повышает литейные свойства, понижает температуру плавления, уменьшает объёмную усадку. Доведение содержания фосфора до 1.2% позволяет получать гладкие, тонкие и чистые отливки. С таким содержанием фосфора используют чугун для художественного литья.
Никель
Используют как легирующий элемент для выравнивания механических свойств отливок со стенками разной толщины, способствует повышению твердости, коррозийной стойкости и обрабатыванию резанием.
Медь
Повышает жидкотекучесть, твердость и прочность, стимулирует процесс графитизации в структуре металла.
Титан
Элемент притормаживает процесс выделения графита при содержании до 0.05%. С увеличением содержания титана процесс графитезации замедляется и повышает механические свойства.
Хром
Притормаживает процесс выделения графита, приводит к дроблению графитных включений, повышает дисперсность перлита, увеличивает прочность и твердость, снижает текучесть и пластичность сплава.
Магний
Стимулирует выделение графита при содержании элемента в сплаве до 0.01%, с увеличением количества стимулирует отбеливание сплава.
Молибден
Элемент замедляет выделение графита, стимулирует образование карбидов, повышает твердость и износоустойчивость без повышения сопротивляемости к обработке.